Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Shekhar, Shashi; Papalexakis, Vagelis; Gao, Jing; Jiang, Zhe; Riondato, Matteo (Ed.)Accurate and timely crop mapping is essential for yield estimation, insurance claims, and conservation efforts. Over the years, many successful machine learning models for crop mapping have been developed that use just the multispectral imagery from satellites to predict crop type over the area of interest. However, these traditional methods do not account for the physical processes that govern crop growth. At a high level, crop growth can be envisioned as physical parameters, such as weather and soil type, acting upon the plant, leading to crop growth which can be observed via satellites. In this paper, we propose a weather-based Spatio-Temporal segmentation network with ATTention (WSTATT), a deep learning model that leverages this understanding of crop growth by formulating it as an inverse model that combines weather (Daymet) and satellite imagery (Sentinel-2) to generate accurate crop maps. We show that our approach provides significant improvements over existing algorithms that solely rely on spectral imagery by comparing segmentation maps and F1 classification scores. Furthermore, effective use of attention in WSTATT architecture enables the detection of crop types earlier in the season (up to 5 months in advance), which is very useful for improving food supply projections. We finally discuss the impact of weather by correlating our results with crop phenology to show that WSTmore » « less
-
Shekhar, Shashi; Zhou, Zhi-Hua; Chiang, Yao-Yi; Stiglic, Gregor (Ed.)Creating separable representations via representation learning and clustering is critical in analyzing large unstructured datasets with only a few labels. Separable representations can lead to supervised models with better classification capabilities and additionally aid in generating new labeled samples. Most unsupervised and semisupervised methods to analyze large datasets do not leverage the existing small amounts of labels to get better representations. In this paper, we propose a spatiotemporal clustering paradigm that uses spatial and temporal features combined with a constrained loss to produce separable representations. We show the working of this method on the newly published dataset ReaLSAT, a dataset of surface water dynamics for over 680,000 lakes across the world, making it an essential dataset in terms of ecology and sustainability. Using this large unlabelled dataset, we first show how a spatiotemporal representation is better compared to just spatial or temporal representation. We then show how we can learn even better representations using a constrained loss with few labels. We conclude by showing how our method, using few labels, can pick out new labeled samples from the unlabeled data, which can be used to augment supervised methods leading to better classification.more » « less
-
Spatial data are ubiquitous and have transformed decision-making in many critical domains, including public health, agriculture, transportation, etc. While recent advances in machine learning offer promising ways to harness massive spatial datasets (e.g., satellite imagery), spatial heterogeneity -- a fundamental property of spatial data -- poses a major challenge as data distributions or generative processes often vary over space. Recent studies targeting this difficult problem either require a known space-partitioning as the input, or can only support limited special cases (e.g., binary classification). Moreover, heterogeneity-pattern learned by these methods are locked to the locations of the training samples, and cannot be applied to new locations. We propose a statistically-guided framework to adaptively partition data in space during training using distribution-driven optimization and transform a deep learning model (of user's choice) into a heterogeneity-aware architecture. We also propose a spatial moderator to generalize learned patterns to new test regions. Experiment results on real-world datasets show that the framework can effectively capture footprints of heterogeneity and substantially improve prediction performances.more » « less
-
Fairness related to locations (i.e., "where") is critical for the use of machine learning in a variety of societal domains involving spatial datasets (e.g., agriculture, disaster response, urban planning). Spatial biases incurred by learning, if left unattended, may cause or exacerbate unfair distribution of resources, social division, spatial disparity, etc. The goal of this work is to develop statistically-robust formulations and model-agnostic learning strategies to understand and promote spatial fairness. The problem is challenging as locations are often from continuous spaces with no well-defined categories (e.g., gender), and statistical conclusions from spatial data are fragile to changes in spatial partitionings and scales. Existing studies in fairness-driven learning have generated valuable insights related to non-spatial factors including race, gender, education level, etc., but research to mitigate location-related biases still remains in its infancy, leaving the main challenges unaddressed. To bridge the gap, we first propose a robust space-as-distribution (SPAD) representation of spatial fairness to reduce statistical sensitivity related to partitioning and scales in continuous space. Furthermore, we propose a new SPAD-based stochastic strategy to efficiently optimize over an extensive distribution of fairness criteria, and a bi-level training framework to enforce fairness via adaptive adjustment of priorities among locations. Experiments on real-world crop monitoring show that SPAD can effectively reduce sensitivity in fairness evaluation and the stochastic bi-level training framework can greatly improve the fairness.more » « less
-
The availability of massive earth observing satellite data provides huge opportunities for land use and land cover mapping. However, such mapping effort is challenging due to the existence of various land cover classes, noisy data, and the lack of proper labels. Also, each land cover class typically has its own unique temporal pattern and can be identified only during certain periods. In this article, we introduce a novel architecture that incorporates the UNet structure with a Bidirectional LSTM and Attention mechanism to jointly exploit the spatial and temporal nature of satellite data and to better identify the unique temporal patterns of each land cover class. We compare our method with other state-of-the-art methods both quantitatively and qualitatively on two real-world datasets which involve multiple land cover classes. We also visualize the attention weights to study its effectiveness in mitigating noise and in identifying discriminative time periods of different classes. The code and dataset used in this work are made publicly available for reproducibility.more » « less
-
Mapping and monitoring crops is a key step towards the sustainable intensification of agriculture and addressing global food security. A dataset like ImageNet that revolutionized computer vision applications can accelerate the development of novel crop mapping techniques. Currently, the United States Department of Agriculture (USDA) annually releases the Cropland Data Layer (CDL) which contains crop labels at 30m resolution for the entire United States of America. While CDL is state of the art and is widely used for a number of agricultural applications, it has a number of limitations (e.g., pixelated errors, labels carried over from previous years, and errors in the classification of minor crops). In this work, we create a new semantic segmentation benchmark dataset, which we call CalCROP21, for the diverse crops in the Central Valley region of California at 10m spatial resolution using a Google Earth Engine based robust image processing pipeline and a novel attention-based spatio-temporal semantic segmentation algorithm STATT. STATT uses re-sampled (interpolated) CDL labels for training but is able to generate a better prediction than CDL by leveraging spatial and temporal patterns in Sentinel2 multi-spectral image series to effectively capture phenologic differences amongst crops and uses attention to reduce the impact of clouds and other atmospheric disturbances. We also present a comprehensive evaluation to show that STATT has significantly better results when compared to the resampled CDL labels. We have released the dataset and the processing pipeline code for generating the benchmark dataset.more » « less
An official website of the United States government

Full Text Available